Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhifang Yu,* Xiuyan Gu, Bing Zhao and Yan Li

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
zhifang@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.147$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(3,4-Methylenedioxyphenyl)-1-phenyl-3-(p-toluenesulfonylamino)propan-1-one

The title compound, $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$, was synthesized by the Reformatsky reaction of N-[(3,4-methylenedioxyphenyl)-methylene]-4-methylbenzenesulfonamide and 2-bromoacetophenone. The S atom in the sulfonyl group has a distorted tetrahedral geometry. The two independent molecules in the asymmetric unit form two centrosymmetric dimers connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the amino and sulfonyl groups.

Comment

Since Gilman \& Speeter (1943) reported the Reformatsky addition reaction to imines, it has been employed as a method of synthesizing β-lactams, β-amino acids and their derivatives. In our laboratory, we have recently investigated a new Reformatsky addition reaction to N-sulfonylimines for the preparation of β-sulfonylamino ketones. A new compound, namely 3-(3,4-methylenedioxyphenyl)-1-phenyl-3-(p-toluene-sulfonylamino)propan-1-one, (I), has been synthesized by the reaction of N-[(3,4-methylenedioxyphenyl)methylene]-4methylbenzenesulfonamide (Shim \& Yamamoto, 2000) with 2bromoacetophenone in the presence of active zinc powder. An X-ray crystal structure determination of (I) was carried out in order to elucidate the structure and the results are presented here.

(I)

The asymmetric part of the asymmetric unit of (I) contains two independent molecules (Fig. 1). In one molecule, the sulfonylphenyl ring (A) and the 3,4-methylenedioxyphenyl

Figure 1
View of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 2 July 2004
Accepted 9 July 2004
Online 17 July 2004
ring (B) are inclined at an angle of $11.0(3)^{\circ}$. Rings A and B make dihedral angles of 8.5 (3) and 14.7 (3) ${ }^{\circ}$, respectively, with the carbonylphenyl ring, different from what is seen in 3-(4-methoxyphenyl)-1-phenyl-3-(p-toluenesulfonylamino)-propan-1-one (Yu et al., 2004); the dihedral angles are 97.5 (3) and $85.8(3)^{\circ}$ in the second molecule. The S atom in each independent molecule has a distorted tetrahedral geometry, with angles deviating significantly from the regular tetrahedral value (Table 1). The two independent molecules form two centrosymmetric dimers connected by intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the amino and sulfonyl groups (Table 2).

Experimental

2-Bromoacetophenone (1.5 mmol) was added to a solution of N -[(3,4-methylenedioxyphenyl)methylene]-4-methylbenzenesulfonamide (1.0 mmol) in dichloromethane $(5.0 \mathrm{ml})$. This mixture was added to a flask which was filled with zinc powder $(3.0 \mathrm{mmol})$ and a trace amount of iodine. The reaction mixture was refluxed with stirring for about 11 h and then quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{ml})$ and $25 \% \mathrm{NH}_{4} \mathrm{OH}(5.0 \mathrm{ml})$. The mixture was extracted with dichloromethane, washed with brine and dried over magnesium sulfate. After removal of the solvent under reduced pressure, the residue was purified by flash chromatography (ethyl acetate-trichloromethane). A yellow powder was obtained (yield 50%) and single crystals suitable for crystallographic analysis were obtained by slow evaporation of an ethyl acetate-petroleum ether solution (m.p. 396-398 K). Spectroscopic analysis, IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): $3242,1678,1326,1155 ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 7.82-7.18 ($\mathrm{m}, 12 \mathrm{H}$), $6.61(s, 2 \mathrm{H}), 5.59(b r, 1 \mathrm{H}), 4.74(m, 1 \mathrm{H}), 3.50(d d, 1 \mathrm{H}), 3.43(d d, 1 \mathrm{H})$, $2.37(s, 3 \mathrm{H})$. Analysis required for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C} 65.18, \mathrm{H} 4.96, \mathrm{~N}$ 3.31%; found: C 65.13 , H 4.91, N 3.28%.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$
$M_{r}=423.48$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=15.968$ (5) A
$b=12.342$ (4) \AA
$c=21.607$ (7) \AA
$\beta=105.682(6)^{\circ}$
$V=4100(2) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.951, T_{\text {max }}=0.966$
23196 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.147$
$S=0.98$
8458 reflections
543 parameters
H -atom parameters constrained
> $D_{x}=1.372 \mathrm{Mg} \mathrm{m}^{-3}$
> Mo $K \alpha$ radiation
> Cell parameters from 796 reflections
> $\theta=3.3-21.7^{\circ}$
> $\mu=0.19 \mathrm{~mm}^{-1}$
> $T=293$ (2) K
> Prism, yellow
> $0.26 \times 0.24 \times 0.18 \mathrm{~mm}$

8458 independent reflections
3849 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-13 \rightarrow 20$
$k=-15 \rightarrow 15$
$l=-27 \rightarrow 16$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0583 P)^{2}\right.} \\
&+0.3065 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-O2	$1.423(2)$	O4-C5	$1.413(4)$
S1-O1	$1.440(2)$	O5-C6	$1.374(3)$
S1-N1	$1.611(3)$	O5-C5	$1.427(4)$
S1-C17	$1.754(3)$	O8-C33	$1.213(4)$
S2-O7	$1.415(2)$	O9-C27	$1.364(3)$
S2-O6	$1.437(2)$	O9-C28	$1.420(4)$
S2-N2	$1.618(3)$	O10-C29	$1.377(3)$
S2-C40	$1.757(3)$	O10-C28	$1.424(4)$
O3-C10	$1.210(4)$	N1-C1	$1.471(4)$
O4-C4	$1.378(3)$	N2-C24	$1.475(4)$
O2-S1-O1	$119.38(14)$	O7-S2-O6	$119.19(15)$
O2-S1-N1	$109.04(14)$	O7-S2-N2	$109.63(16)$
O1-S1-N1	$104.09(13)$	O6-S2-N2	$103.99(14)$
O2-S1-C17	$106.52(14)$	O7-S2-C40	$107.21(15)$
O1-S1-C17	$108.98(15)$	O6-S2-C40	$108.78(16)$
N1-S1-C17	$108.46(14)$	N2-S2-C40	$107.56(15)$
O2-S1-N1-C1	$55.2(3)$	S1-N1-C1-C2	$98.4(3)$
O1-S1-N1-C1	$-176.3(2)$	N1-C1-C9-C10	$76.6(3)$
C17-S1-N1-C1	$-60.4(3)$	C1-C9-C10-O3	$43.3(4)$
O7-S2-N2-C24	$53.9(3)$	C1-C9-C10-C11	$-138.5(3)$
O6-S2-N2-C24	$-177.6(2)$	S2-N2-C24-C25	$93.1(3)$
C40-S2-N2-C24	$-62.4(3)$	S2-N2-C24-C32	$-141.7(2)$
S1-N1-C1-C9	$-135.8(2)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.17	$3.007(3)$	163
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.20	$2.929(4)$	142

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 2-y,-z$.
All H atoms were positioned geometrically and refined as riding $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$, with $U_{\text {iso }}$ values set at 1.2 $\left(\mathrm{NH}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of ElementoOrganic Chemistry, Nankai University. This research was supported by the Visiting Scholar Foundation of the Key Laboratory in the University. The authors thank Tianjin University. The work was also supported by the ' 985 ' Project of Tianjin University.

References

Bruker (1997). SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Gilman, H. \& Speeter, M. (1943). J. Am. Chem. Soc. 65, 2255-2256.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shim, J. G.\& Yamamoto, Y. (2000). Heterocycles, 52, 885-895.
Yu, Z. F., Gu, X. Y., Zhao, B. \& Li, Y. (2004). Acta Cryst. E60, o1290-o1291.

